TRANSIENT MOTION OF GROUNDWATER (SUBSURFACE
WATER) IN THE PRESENCE OF EVAPORATION

N. N. Kochina UDC 532,546

The spread of a mound of groundwater in the region between two parallel channels with dif-
ferent water levels (H; at x=0 and H, at x=1) during irrigation is studied with due allowance
for evaporation. Evaporation is taken into account in relation to the depth of the groundwater
h(x, t); its intensity is regarded as zero when h<h, (where hy is the critical levelof the ground-
water), while varying linearly or remaining constant when h>h, The intensity or irrigation
is regarded as constant. This problem is solved by using the thermal potentials of a double
layer and reduces to the solution of a nonlinear integral equation,

1. The intensity of evaporation w(x, t) is a nonlinear function of the depth of the groundwater h(x, t)
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In Eq. (1.1) either b >0, d=b, H=h, (linear dependence of the evaporation on the depth of the ground-
water) or b=0, dH=—2<0 (constant evaporation). Thus the intensity of evaporation is denoted by € when
constant,

For simplicity we shall assume that the initial mound of groundwater h(x, 0) =¢ (x) intersects the plane
h(x, t) =h; at not more than one point x =x,, We shall also consider, in order to make the analysis specific,
that the inequalities Hy=h;=H,; ¢ (0) <¢ (x;) S¢ (L) are satisfied.

The problem then reduces to the solution of the following problems for the functions hy(x, t) andh,(x, t):
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ho (Lyt) = Hy (7 (&) <2 L)
ho(z, 0) = (2) (zo<z<LL).

In Eq. (1.2) k is the filtration coefficient, o is the deficiency of saturation or water delivery; Hs is a
certain average level of the groundwater; H; and H, are the water levels in the chamnels; L is the
distance betweenthe channels; , @ is the intensity of irrigation. In Egs. (1.2) and (1.3) x=y(t)is the equa-
tion of the boundary (moving with time and not known in advance) at which the level of the groundwater is
equal to the critical value hix (t), t) =h, and the flow continuity condition is satisfied

Ohy{y (8). t1 SRy [y (1), t) (1.4)
dx - ox ’

where hy(x, t) is the depth of the groundwater in the region 0=x=x; hy(x, t) in the region y¢)=x=<L.

We note that problems. similar in presentation to (1.2)-(1.4) were solved in {1-5].
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Clearly the equation ¥ (0) =x,.
Let us put

hy= — 5ozt 4 byt u(a, 1). (1.5)

Problem (1.2) then reduces to finding the solution of the following:

2
%‘ = g3 %5';; u (0, t)=H,—hy; (1.6)
ulx (), 1 = 55 % () 0<2 <O
& (2,0) =1 (2) = 9 (2) — o +5.32%, (02 < o).

Regarding x (t) as a known, differentiable function, we write the solution to this problem in the form [6]
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If in the b=0 case we put
by (e, 1) = ko + 5 +exp (— b) wi (z, 2}, (1.8)
we reduce problem (1.3) to the following:
2,
%:az%; wﬂx(t),t]:—% exp (b1); (1.9)

willy 1) = (Hg — 1 —%> exp (bt), (1() <z<L)

wy (2, 0) = 03 (2) = 9 (&) — ho— 5, (22 <L).

If b=0 we put
hate, )= — &z a0 by w1, 1), (1.10)
From (1.3) we obtain ”
ow o« —E
T = ml@,d= 0 (1.11)

g (L) =Hy— b+ o I, () <z < L;

we (2, 0) = 0 (2) = 9 () + 5o e — by, (29 <2< L),

The solution to problems (1,9)-(1.11) may be written [6]
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L [ (2—=3%] .
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O (x. 1) = li=1.2).

oy ’
o 20 ) nt

In Egs. (1.7) and (1.12) vi(T), Vo(T), Vg(T), V,3(7)(i=1, 2) are unknown functions; they are deter-
mined from the boundary conditions (1.6), (1.9), (1.11), which, in accordance with [6], gives the sys-
tem of equations
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Here we have introduced the following notation:

ren= (tc—}—“r;%“ o [_ ot ]; (1.14)
Rt 1) == C_M(?(_i_%/(ﬂ exp {_ [X.afztﬁ) (TE (TT))]Z };

R

M, 1) = CEZ:::)(;/?] exp {_ {Z"a(:zz: zgz };

Vi) =c(Hy—ho— F (0,0)]; valt) =c {‘2% 12 () + F [ (0), s]};
Vi () = ¢ {— - exp (b1) — Dy [ () :1},

Ver () = —¢ {(H —hy— —“b-) exp (8t) — Oy (L, z)};

v @)= e (720 0 = Oalu 0. 1

2a*

Yoz () = — ¢ {Hg—-ho—}- 2—¢ L3—~CD2(L,t)};
(c = [2a V' F]1).

Substituting the function vy(t) from the first equation of the system (1,13) into the second and using
the Dirichlet equation, for the function v,(t) we obtain a linear Volterra integral equation of the secondkind
with a singular kernel of the type K, 7) =G{t, 7)/Vi—7 [7], where Gfit, 7) is a regular function

t

S =10+ | Q¢ e (1.15)
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Here we have used the notation

t
- N A el 4 I 4O LN g
Qm =Rt 02:5 (t—o) (o —npP P { Tﬁ[m+<?——_rl}d0’

H
fo=wm+{seovmar

[

In an analogous way for the functions v () we obtain an integral equation of the same type

f

235 () = ¢, (0 + { W (6,9 03 (1) s (1.16)
h
. .
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W= =R+ [ SR e g i e e

9, (t) = Vai -+ q U vy (1) dr.
0

Thus, on the assumption that the function x(t) is known, the problem reduces to the solution of Egs.
(1.15) and (1.16), after which the functions v,(t) and v,;{), (i =1, 2) are determined from Eqgs. (1.13).
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If we replace v,(T) and v4i(7) in (1,15) and (1,16) by the right-hand sides of these equations, we re-
duce the latter to Volierra equations with a regular kernel
(1.17)

u,(z)~¢(t)+\ (1) g () dT,
g

t
g1 (8) =9, (¢ ) {t: 1) vy (T) dr,
b

BO—7 @+ s Q%) () d,

t
Vi(,7) = | Q(t,0)Q (0,7 do,
o
¥, (8 =@, () + § W (2, 1) 9; (1) dt,
0
t
Gyt T) = j W (t. 6) W (0, 7) do, (i =1,2).

The solution of Eqs. (1.17) takes the form

t
u®=v0+ [ Ft. 199,
0

t
5 )= 0,0+ [ F 0¥, @ ar,
0

where
F(t,)= X V(6,0
m=1

i
mit &= Va0V, (0,7 do;
T

E(t7)= X G, (005
m=1

t
g (6 T) = 5 G1(t, 0)G (0, 7) do,
T

in which if |V &, 7)1 =V [G4tt, 7) | =G, we have the estimates

IF(t )< Vo exp [Vo(t—D)],
1E@, )1 < Gy exp [Gt—1)].

Tt remains to find the function x (t).
2. The function ¥ (t) is determined from Eq, (1.4). Making use of Egs. (1.5) and (1,8), we obtain the

condition for determining ¥ (t) in the b#0 case in the form
duld () 8] _ = exp (~— bt) dwy [X (t), 21 2 x(0) (2.1)
ox

If b=0, then by virtue of (1.10) and (1.5) this condition becomes
(2.2)

Gulx(®),t] _ Swaln (), t] o & ..
ox a?

dx
In order to find the derivative du[y (t), t]/9x we transform the integral
t )
i —
5 x)g/z exp 1 _;22 tx_(T»Z-; } 14 (T) dt,
0

in Eq, (1.7) as follows
I =1+ 1,
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We then obtain _
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T
in which
ar 2w, (2) [x () — =}
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Allowing for (2.3)~(2.5) and making use of Egs. {1.7) we obtain an expression for the derivative
dulyx (), tl/ox
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0

Using transformations analogous to (2.3)-(2.5) we derive an expression for the derivatives dw;[x (), tl/
9x from Egs. (1.12)

bw (0, 1] 0D, [L(), ¢l 2vy()

oz = oz ~ Vi
. L — ()]
+S’9‘P{ /Taf(?_—'?} v (7) e S [vs; (1: vy, ()] dt
3 3 -
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: @ —y@?
| P{ kil ety
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[0
?
1 % () — x (0)]2 [ (8) — % (x)]?
—33 7_17)5—2 exp {—— m} vy, (1) dr. (2.7
]

Substituting Egs. (2.6) and (2.7) into (2.1) and (2.2) and multiplying the resultant equations by V%, we
obtain nonlinear integral equations for determining the function y (). For the sake of brevity these equa-
tions may be written in the following form:
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QL@ = b lx®, 8, 1@, lar, (=1,2), (2.8)
0

where we have introduced the notation

Qux(8)s 8] = —2va (t) + 2exp (— bt) vy, (£) LVt {o_mi] —&z(t) —exp (— bt)w};

oz a oz

QL1 (1), 1= — 2v3 () -+ 2vga (1) - 1 ?{

aF[;éz(t), t] _acbz[;:;it), t] _%x(t)}
Equation (2.8) may also be written in one of the following two ways:
#O=v1(00y; 1), ] (2.9)
or
L—3@®)=v,,6)Q; [x®), . (2,10)

' Here Qqj and Qi(i =1, 2) are certain nonlinear operators. Applying the method of successive approxi-
mations to (2.9) and (2.10) .
Yt A=V 10, tl, 7@)=0;

(2.11)
L—'Zm.{.j(t)zvgi(t)qi {Zm(t)i tl, %)=L,
we obtain the inequalities (|| x|l =max| x(t) )
”7-)11+1—Zm" < 'flﬁi./vm_xm—i!;‘ (2.12)

The successive approximations xm(t) converge if ¢ <1, It is clear from Egs. (2.11), (2.12), and (1.14)
that this inequality may in fact be satisfied, at least subject to certain limitations imposed upon the con-
stants entering into the conditions of the problem and on the function ¢ (x).
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